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ABSTRACT

As a first step in the development of a more general theory of
propagation and transport of noise by compressional waves in a nonuniform
electron gas, this report considers in particular the medium-like pro-
pagation in an electron gas in equilibrium with one or two plane emitters.
In analogy with acoustic propagation in a neutral gas, adiabatic com-
pressions are tentatively postulated; the solutions are then accepted as
physically significant only if they satisfy the conditions for negligible
Landau damping.

It is found that the plasma resonance frequency or low-frequency
cutoff frequency required to meet these conditions occurs between infinite
plane emitters only if one of the emitters is operating strongly
temperature-limited. This "unsaturated state" of the gas is precisely
specified by the value of an integration constant in the expression for
the d-c electric field in the gas. The plasma resonance frequency is
found to be constant everywhere in the gas, despite the fact that the
electron density varies widely between the emitters.

In no other states, "saturated" or "supersaturated", does such a
plasma frequency and the consequent approximately adiabatic propagation
exist. In other words, these states show practically no real medium-like
behavior.

The extension of this analysis to states of accelerated flow is
in progress, but corresponding closed-form solutions of the adiabatic
wave equation have not yet been found.
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NOISE PROPAGATION IN A NONUNIFORM ELECTRON GAS

I. INTRODUCTION

The problem of minimizing the noise factor of amplifiers utilizing

beams of electrons requires for its solution a good understanding of the

physical origin of the noise fluctuations in the beam as well as of the

manner in which these fluctuations are propagated or transported along

the beam. This need can be met by constructing theoretical models that

are simple to handle intuitively as well as analytically and nonetheless

lead to reasonably accurate predictions of the behavior of a physical

device in the laboratory.

The conventional single-velocity theory, which disregards the

thermal velocity spread of the electrons, fails to predict correctly the

behavior of an electron gas under conditions where the drift velocity of

the gas is of the same order of magnitude or smaller than the thermal

velocities. In the design of more realistic and consequently more compli-

cated models, their intuitive value will be considerably enhanced if it

is possible to take advantage of analogies with previously familiar

subject matter in mathematics, physics and engineering.

The exploration of such analogies is an essential facet in the

work reported here. In addition to the conventional boundary-value

methods and transmission-line and waveguide theory, acoustics and aero-

dynamics are considered, and comparison with these two fields necessarily

raises thermodynamic questions. The velocity of "sound" in an electron

gas, i.e., the velocity of plane compressional waves, is investigated

under conditions of uniform temperature but nonuniform density. Other
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interesting analogies, such as possible electron shock waves, and the

parallel between an electron gun and a hypersonic windtunnel have not

been seriously explored.

The thermodynamics of an electron gas is approached from the known

relations between the distribution function, Boltzmann's H-function and

the entropy. The calculation of the entropy contribution from the dis-

tribution in velocity space is well known; on the other hand, the

evaluation of the contribution from the randomness in x-y-z space proceeds

along somewhat unconventional lines, although it is a natural extension

of the conventional application of Poisson statistics to the shot-noise

current in temperature-limited electron flow. At first sight it may

appear that the electric energy associated with the x-y-z distribution

is so small that the corresponding entropy contribution can be neglected.

However, a nonrandom distribution could lead to considerable electric

energy storage, and inclusion of this entropy component makes it possible

to exclude automatically such nonphysical distributions or variations of

distributions as incompatible with the laws of thermodynamics.

If thermodynamics is disregarded and an analysis of the properties

of the electron gas is based solely on continuity in phase space, Lorentz

force equation for the electron, and Maxwell's equations for the electro-

magnetic field, no unique solutions for the propagation of transverse and

compressional waves are obtained. The work of Landaul, Bohm and Gross 2,

Bernstein3 , etc. on thin plasmas with a Maxwellian velocity distribution

apply also to an electron gas. Their solution of the above equations

by a Laplace-transform method from specified initial or boundary conditions

permits a classification of component solutions into incoherent or dis-

organized disturbances and organized or medium-like disturbances. The
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former are similar to the random motions in a very thin gas of neutral

particles, the latter are "organized", i.e., given coherent shape by

the combined influence of the electromagnetic field and the stationary

electron statistics. The latter solutions are of two different kinds,

one essentially electromagnetic waves (TEM, TM, and TE waves) with the

dielectric constant and the velocity of propagation modified by the

presence of the electrons, the other purely compressional or "acoustic"

in its nature. The solutions of primary importance in electron devices

are the TM-waves, which are necessarily at least two-dimensional. However,

a one-dimensional solution of the compressional kind, which is much

simpler to handle analytically, permits certain conclusions about cor-

responding TM-solutions, in the present case as well as in the well

established single-velocity approximation. Landau showed that the

organized compressional waves are unattenuated only as an asymptotic

limit. The "Landau damping", however, is very small in many problems of

technological interest. Like copper losses in short waveguides or

waveguide components, it can often be disregarded in a first-order theory.

The approximately undamped compressional solutions which are

characteristic of the electron gas as an "elastic" medium, may be deter-

mined by borrowing from the conventional derivation of the acoustic wave

equation the idea that the expansions and contractions of the gas should

be adiabatic, i.e., leave its entropy invariant. In acoustics this

postulate disregards the presence of viscous friction; in an electron

gas it obviously excludes Landau damping. This idealization of the

physical relations suggests that the physical significance of the result

has to be evaluated in each case. If the solutions have wavelengths

large compared to the Debye wavelength, the Landau damping is known to
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be small and the solutions are good approximations. On the other hand,

conditions indicating heavy damping suggests that the, gas has no

appreciable medium-like behavior. Correlations from point to point or

from instant to instant are insignificant.

An adiabatic change is reversible; it is easily understood that

an irreversible change of the velocity distribution will take place if

the density in velocity space is appreciable in the vicinity of a velocity

equal to the phase velocity of the electric field. The requirement

quoted above is of course equivalent to the demand that the phase velocity

of the wave be far outside the thermal velocity spread of the electrons.

The same result as obtained by means of the adiabatic condition

can be achieved by another postulate, which is arrived at by a completely

different reasoning, presented in a previous report 4 l 5 . The formulation

of this postulate involved the statement of the electrokinetic power

flow in the form of the product of a convection-current density and an

electrokinetic potential. It was shown that such an equivalent potential

may exist in a one-dimensional environment. The criterion for small

medium-like disturbances was taken to be that a small plane-wave pertur-

bation should be accompanied by small but nonzero perturbations of

convection-current density and equivalent potential; for perturbations of

other kinds no finite equivalent potential exists for a nonzero convection-

current perturbation.

The equivalence of the adiabatic and the electrokinetic-potential

criteria will be tested in the appropriate contexts in the present

investigation.
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II. THEORETICAL POSTUIATES AND OUTLINE OF PROCEDURE

Let p(ru) be the expected value of the statistical number

density of electrons in an electron gas at the point (x;yZ,UXUyuu)

in p.-space. Continuity in p. -space and the Lorentz force equation then

combine to the following forn of Boltzmann's transport equation

+ (u -17) p - E + 1. XTh B) =7 (Pc 0 ()

where the differential vector olperators

7 + ;z (2)

r y

-and the constant

q e (4)
=m e

is the charge-to-mass ratio of the electron. All electron velocities

are assumed to be so small compared to the velocity of light that the

relativistic mass variation can be disregarded. The last two members

of Eq. 1 indicate that discrete binary interactions, "collisions", are

assumed to be a negligible factor.

If Eq. 1 is integrated over the full range of the velocity

coordinates, the result states conservation of electrons in (x,y,z) -space.

If all terms are multiplied by nu before the integration, conservation

of momentum is expressed by the equation obtained; finally, the factor

mu2/2 leads to a statement of conservation of energy. Conservation of

higher-order moments of the veocity distribution is of less interest.
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In a previous report 4 ' 5 the third one of the above mentioned

integrated equations was used in conjunction with Maxwell's equations to

find the appropriate form of Poynting's theorem for a volume containing

an electron gas

div (P em + Pek dV f (Pem + P ek) dS = T e + e) dV

V S V

(5)

where 8em and Pk are the electromagnetic and kinetic energy density,

respectively, and Pem and Pek denote electromagnetic and electrokinetic

power flow, respectively.

For periodic disturbances the last member averages out to zero;

consequently, the theorem states that under steady-state periodic (or

stationary stochastic) conditions the net average power crossing any

closed boundary surface is zero.

The particularly interesting quantity in Eq. 5 is the electro-

kinetic power flow

Pe T2 .m [ + ~ (3u 9 div(U - r= ] (6)

In one-dimensional applications, such as plane compressional wave

motion in a uniform gas, this expression reduces to

+00

Pek - 2 m uap(u,z)du (7)



If a conservative elastic medium is to be used as a model for the

propagation of disturbances in an electron gas, it can be shown that

it must be possible to factor this vector into a product of one convection-

current-density vector and a scalar "electrokinetic potential". This

approach was discussed and illustrated in the previous report mentioned

above.

Here we shall base the investigation of medium-like propagation

on more fundamental considerations. It is helpful to compare the

derivation of the D'Alembertian wave equation in acoustics. For that

case the physical postulates are the equations of continuity, Newton's

equation of motion, and the relation for adiabatic compression of the

gas. Our Eq. 1 above combines the first two of the corresponding acoustic

equations, but Maxwell's equations for the electromagnetic field do not

constitute a complete counterpart to the third one. It may not be obvious

if and how an adiabatic compression of an electron gas can be defined.

In acoustics, an adiabatic change of state is reversible and leaves the

entropy of the gas invariant. It may appear questionable that a volume

or a volume element of an electron gas can be taken as a "temporarily

closed system" for the purpose of evaluating thermodynamic coordinates,

such as temperature, entropy, etc., from thermodynamic principles.

However, statistical mechanics offers unambiguous definitions of tem-

perature and entropy in terms of the velocity variance and the Boltzmann

H-function, as long as a statistical distribution function can be stated

for each volume element of the electron gas. In the ranges of frequency

and temperature to be considered in this paper

- 1 , (8)
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where 4 is Planck's constant h divided by 21, w is the radian frequency

of a perturbation considered, k is Boltzmann's constant and kT is the

variance of the velocity distribution in each dimension multiplied by

the electron mass. Consequently classical statistical mechanics is

applicable, and it will be assumed that an equilibrium state at the

surface of an electron emitter or, if so stated, elsewhere, is described

by a Maxwell-Boltzmann distribution function. For an ensemble of a

given number N of electrons the entropy per electron in terms of the

distribution density function A(r,u) ýn p-space can then be written:

e N log N- dV (9)Se N N

VN
vN

where dV is the volume element in ýL-space and V N is the total volume in

ýL-space occupied by the N electrons.

A small variation 5p of' (rPu) is adiabatic if the corresponding

variation in entropy NbS is zero.
e

0 = NbSe - Nk 1 + log ) dV (10)j N NV, (O

V1
N

V' being the volume after the adiabatic change of state.

If the position and the velocity of an electron at a given instant

are taken to be independent random variables, p(r,u) may be written as

N times the product of two independent probability densities, one in

velocity space, related to the kinetic energy of an electron and one in

(x,y'z) space, related to its potential energy. Because of the logarithmic
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nature of Eq. 9, the entropy variations may be computed separately from

the two probability densities r and "' and the result addedr PU

0 = NbS = (asr + 5su) N (11)

In terms of time and space coordinates this condition may be

written

dS )s
= N e= (um , e (12)

where urn is the ensemble mean of the instantaneous electron velocity. In

the case of a small time-varying perturbation p1 (r,u) on a steady-state

distribution po(ru), the first-order relation between the corresponding

entropy quantities obtained from Eq. 12 is

0 = N + (u '7) (15)

The complete system of equations consisting of a first-order

perturbation version of Eq. 1, Maxwell's equations for the electromagnetic

field and Eq. 13 determine the medium-like propagation of disturbances

in an electron gas, subject to the reservation for Landau damping given

previously.

For the representation of plane compressional waves i-space may be

reduced to two dimensions, u and z, if the z-axis is taken as the direc-

tion of propagation and the electron gas is uniform at least with x and

.y. Also the u -dimension may conveniently be eliminated by the three

successive integrations of Eq. I mentioned above. However, it is

expedient to modify this procedure slightly. Equation 1 may before
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integration in turn be multiplied by each Hermite polynomial Hn(v) of

the normalized velocity v = uz/a, where L 
2 is the mean square value of

u according to the steady-state distribution at some convenient reference

point. Let us define

an(z) = n(v)P(z~ov)av 14)

-CO

Then quantities a may be considered as the coefficients in a seriesn

expansion of p(u) in velocity space

CO

p(o'v)oadv = x anpn(v) dv , (15)
n=O

where

_pn(v) 1 H() exp v2) = Hn(V)•o(V) (16a)4--2; = n(V 2x (-)Po

The Hermite functions (13) are related by the equation

dn
Cn(v) = (-1)n -a (o(v) (16b)dvn

and the polynomials by the recurrence equation

v. Hn(v) = H n+(v) + nHn-,(v) (16c)

The sequence of integrations of Eq. 1 referred to above is

equivalent to introducing Eq. 15 into Eq. 1; because of the orthogonality

of the polynomials with respect to the weighting function cpo(v), one

independent equation is obtained for each function (Pn(v). The result is

an infinite system of partial differential equations between the

44
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coefficients a as functions of z and t and the electromagnetic field.n

The latter may be eliminated simply by the use of Poisson's equation,

if the scope of the analysis is limited to plane compressional waves and

the magnetic field is taken to be zero or parallel to the z-axis.

=-f - ')eq
6E %e qe q e c e

6. jp(u,z) du ---- a -= . (17)
0-w 0 0

The symbol
J6

e = dz= 0 E (18)
qe

is more convenient to use in the resulting differential equations than

the integral of a 00

Thus the first coefficient in the expansion (15) is proportional

to the charge density in real space. The second coefficient is related

to the convection current density by

4-

J= qe up(u)du= qeaa (19)

The significance of the coefficients a and a will be explored2 3

below in the analysis of particular examples of propagation of compres-

sional waves in an electron gas.

Although only the first three equations in the infinite nonlinear

system obtained above will be used in the subsequent analysis, a brief

discussion of the infinite system is in order. Before any additional

condition such as Eq. 13 is imposed on the gas, the general solution has

an infinite number of independent parameters; this is reasonable, since

arbitrary boundary conditions or initial conditions in ýi-space can be
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satisfied only by such a solution. However, there may be restrictions

on the ensemble of solutions that can even represent a physical situation.

The condition given by Eq. 1.3 is too restrictive; other disturbances than

adiabatic ones are certainly conceivable if not indispensable. But

some mi3der restrictions related to the second law of thermodynamics

must apply to the whole physical system, including both the electron gas

and its environment.

It is interesting to note that the transport equation (1) treats

the electron density as a smooth continuous function. Only the ratio of

charge to mass occurs, but no reference to the finite quanta of charge

and mass or to the finite number of degrees of freedom of the gas. The

continuous function is of course a consequence of the fact that the

electron density is a probability density rather than a real discrete

particle density. The parameters of the equilibrium-distribution density

function are functions of the discrete particle dimensions, however, so

that these dimensions do actually implicitly enter the Eq. 1.

III. THE UNIFORM = RALIZED ELECTRON PIASMA

The first case of medium-like propagation to be considered is in

a uniform Maxwellian electron gas at rest. In order to eliminate any

steady electric field it is convenient to postulate simultaneously a

uniform positive gas component of equal charge density but with such a

small charge-to-mass ratio that it may be taken to remain completely at

rest during the transmission of compressional electron waves. This is

the case of a perfect electron plasma., the solution of which has been

extensively studied. It is reviewed here as a simple illustration of the

analytical procedures to be used in this report and for the purpose
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of discussing in more detail a few aspects of the physical phenomena

involved.

The electron distribution density in velocity space is at rest

independent of t and z

(zu)du a a 1 exp 1( U2 du
PO00 -2 Ca22 c

6e

a cp( o 0 q(v)dv (20)= 0 aoo v)dv = -Z • o

Let a small perturbation of' p be denoted by

pi(t,z,u)du &a ncn(v)dv (21)

n=O

It shall be assumed that the perturbation is so small that the

system of equations obtained from Eqs. 1 and 18 by setting

p(u) = pO(z,U) + po(tzu) (22)

is very nearly linear in terms of the perturbation p1. In case of pure

compressional waves a sufficient condition for linearity is that for any

u and u

u
2

f Iju <K f p0du (23)

U -00

If solenoidal disturbances are included a more general criterion

may be borrowed from the acoustics of solids: the periodic excursions



of the electrons from their unperturbed paths must be negligible compared

to the wavelength or attenuation length of the vibration.

The infinite system of first-order equations then is

62e 6a
10 11

K-+z 6z 0 (24.1)

)a11 10 +2 6a12 _ ee ýe oo 0 (24.2)• -''---6Z2 6 z 6 Cr io )z -
0

12 ii 13 0

=t 0 az+ a6 (24.3)

6a •

i__nn in-I izn+1
-t + a n- + (n+l) a zn- o0 (24.n)

The assumption of a neutralizing positive space charge leads to

an apparent inconsistency. The symbol

- e = dz
00 f 00

from Eq. 18 above has been used as the integral of the electron density,

although the integral of the total charge density is zero. Thus the last

member of Eq. 18 does not apply to the d-c field component, which is zero.

Clearly the system in Eq. 24 is indeterminate, since any n equations

contain n+l dependent variables.

Let us now restrict the discussion to adiabatic perturbations.

Then an additional equation may be obtained from Eq. 11 in the previous
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section. It is not necessary to use Eq. 13 here, since the unperturbed

gas has zero mean velocity u and its entropy S is invariant with z.mo eo

The entropy and entropy perturbation per electron derived from the velocity

distribution p and the perturbation bp are then

S = -k f '' log aoo

j 00 00

= -k log f2AeU2 for Maxwellian gas , (25a)

5S = -k f + log -u ) du , (25b)
-. 00 - 00

where

a 00  f po(z,u)du = N (26)
--00

Since the number of electrons in the group remains constant during

an adiabatic change of state, it is required that

4-0

j bp(z,u)du = o (27)

-.00

The perturba'ion per unit volume p (zu) given by Eq. 21 obviously cannot

satisfy this requirement. Since infinitesimal readjustment of the average

density affects only the first term in the expansion (21) appreciably,

the variation 8p to be used in Eq. 25 is simply the right-hand side of

Eq. 21 with the first term omitted. Consequently



-16 -

b- [k 1 log2 1c ] Z a CPn(v)dvSu 2 k i- o 2• X in2 n = 12

-00 n=1

(28)

The potential energy associated with the z-coordinate of each

electron is much smaller than kT/2; at first sight it may therefore

appear that the z-distribution of the electrons can be neglected in the

computation of the entropy variation. However, the potential fluctuations

represent the only collective and individual interaction in the gas and

are essential to its medium-like properties. Furthermore, if the dis-

tribution of electrons in space were not random, the potential energy

could easily become very large.

The statistics of the potential fluctuations is not explicitly

needed for the entropy calculation, only the probability density of the

z-coordinates of the electrons or of some equivalent generalized coor-

dinates. It is convenient to choose the differences between the

z-coordinates of neighbor electrons and to assume complete randomness,

i.e., that the number of electrons per volume element has a Poisson

distribution. Then this one-dimensional "distance" I between electrons

has the probability density

P(1) dl = exp(- I/L) df/L [0 < I < •] (29)

It can easily be shown by conventional variational procedure that this

probability density maximizes the z-component of the entropy under the

constraint of given expected value of the electron density 1/L = a
00

This entropy component of a group of N electrons is consequently
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00

NS = - Nk / P log P dl = Nk log Le (30a)Nr

0

, where e is the base of' the natural logarithms.

The entropy variation due to a perturbation 5P(I)

NPS N) 1 - log L - N lO() -k

- k 1N F!8P,~l)dI =Nk 'L Nk- 1-9  ka=L = L = a 100 00

(3Ob)

The third and fourth members of Eq. 30b express N times Boltzmann's

constant multiplied by the variation of the expected value of the one-

dimensional electron "distance", divided by the unperturbed mean distance

L. The fifth member follows from the fact that an infinitesimal increase

in the relative mean distance in one dimension is identical to the

decrease in the relative electron density if the density is invariant

in the two orthogonal dimensions.

The total entropy per electron in one dimension of a Maxwellian

electron gas with a Poisson distribution in space is obtained from

Eqs. 25a and 30a.

S = Su + S = k log 42iea2 + k log (eL)

= k log (cL) + constant

=k log a + constant (31a)
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Consequently an adiabatic change of state requires that

5
2  kT N

a2  m N2 constant (31b)
00

where VN is the volume occupied by N electrons and T is the absolute

temperature. In this relation the pressure may be introduced in order

to permit a comparison with the gas laws:

P = 2 mu2p(u)du mC2 a = kTvN (32)
S~0

giving the result

p V3 = constant (31c)

which is to be compared with the classical relation for adiabatic varia-

tions

p VN = constant , (31d)

where 7c is the ratio of the specific heat at constant pressure to that

at constant volume. That this ratio is equal to 3 under conditions

where a single degree of freedom per gas particle is involved is well

known.

The general result for a small adiabatic perturbation in a

uniform electron gas at rest is according to Eqs. 25b and 30b.

0 = N(8S +S) = k(a - ) (33a)
u r 1.2 10

or

a = a . (33b)
12 10
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From Eqs. 24.1 and 24.3 it is found that Eq. 53b is equivalent to

6a__3 = 0 
(33c)

In the previous report 4 the condition a = 0 for medium-like

propagation in a uniform equilibrium electron gas was derived from the

postulate that the perturbation power flow be expressible as the product

of the perturbation convection-current density and an equivalent pertur-

bation potential. The consistent results obtained from radically

different postulates suggest that either one approach may be used alter-

natively whichever one happens to be more convenient in each particular

case. For this reason the essential points of the equivalent-potential

approach shall be reviewed.

The general definition of equivalent potential is obtained from

the power flow, Eq. 7

403

me u3p(uz)du = V qUp(uz)du (34)
-. 00 -- O0

For unperturbed equilibrium conditions both integrals are zero, and V

appears indeterminate, but if the whole velocity distribution is displaced

by a small velocity Au, V(Au) is a continuous function of Au and approaches

a limit as Au approaches zero. In this way the unperturbed equivalent

potential, or "kinetic potential" is found to be

403

u Po(u)du

v f - 0 - _ . (_5)
o 2rI 4- 2n

pO(u) du

-00
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The first-order perturbation of the power flow may be written

400

u 3 p1 (uz) du = VoJ 1 + V J (36)

-00

Since J is equal to zero, Vl can be a small perturbation only if
0

4001 me Us
m (u3 - 2rVou) p (u) du = 0 (37)

-00

or

1 P/:o(8
3- j (v 3 - 3v) p (v) dv = a is (38)

In the present case, where the system of differential equations

is linear with constant coefficients, all solutions are linear combina-

tions of exponentials in z; consequently Eqs. 38 and 33 are identical.

The solutions describing the adiabatic propagation of disturbances

in the electron gas is now readily determined by applying the condition

of Eqs. 38 or 32 to the system of linear differential equations (24),

which is homogeneous with constant coefficients. The first Eq. 24a can

be integrated directly with respect to z; the constant of integration

may be temporarily omitted, since it would make the system nonhomogenous.

For perturbation with a time variation of exp (jOt) the Sturmian form

is obtained by proper algebraic operations:

1 - a , (39a)
7T CF- 12

12 W

12 =Ký _ LI2 ) a ,, (39b)
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where

ýqe eoo 1 (qe2 - - - a (4o)
P E0 6 z 6 00

In terms of the convection-current density I and the equivalent

potential V1

I, = - qeja , (41a)

V1  2= 3 a 2 (41b)
V2 T ao00

the result may be considered to express the propagation on an equivalent

transmission line or waveguide,

2qeaoo

) -YvI = - 3a 2m v , (42a)

e

=i me (42b)
-) z iC 2 q2a -2 I)e oo

the propagation constant and characteristic impedance, respectively,

being given by the relations

72 = ZY - 1(- 2 , (43a)

°m•o

Z0 2q =4z/ 2= 2 e 3 (1 (43b)
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From (43a) the phase velocity u pand the group velocity u

respectively, of the plane-wave solutions of Eqs. 39a and 39b are obtained

wo 43-C i __ (44a)
Up - C)y2

d0) (0)2 1/2

= dw =' ) 2 .J3c l-11 (44b)
Ug T 7 a)2 )4b

The phase velocity approaches infinity and the group velocity

zero as the frequency approaches w) . The square root of the product ofp

phase and group velocities is a characteristic of the gas which has

similar form to the velocity of sound in a pure neutral gas

u 7=-
us- (45)

where yc is the ratio of specific heats and M the molecular mass. In

comparison

ur-ý -kT: = (46)
pg me

for the electron gas. The appearances of the factor of 5 instead of 7c

in this expression is consistent with the relations for adiabatic

expansion, Eqs. 31c and 31d.

If the unperturbed velocity distribution is not Maxwellian, the

transport equation still holds, but the adiabatic condition in Eq. 32

will in general change. An estimate of the entropy variation 6Su of the

velocity distribution may be obtained by introducing the expansions in

Hermite functions (Eq. 15) for p and 5p. Since the second and third
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coefficients a and a are made equal to zero by choice of reference
01 02

frame and normalization, the first and probably largest nonequilibrium

component is a 0. Let us first evaluate 6Su for the case that a o/aoo

is a first-order small quantity and that all higher-order components are

negligible. Then the velocity entropy variation is

5S = - a + log CPO(v) + a0o 3 (v) a n~n(v)dv
-00 n=l

400 00

I- • + log wo(v) + log 1 + 0 H (v)] } 7 nan(v)dv

k 0F1 a 3 Y

-00 00 n=l

ka aaa

k ao- 03 _ (50)

Consequently the conditions a13 = 0 and a 1= a are still com-

patible at least to the first order, and the previous results apply also

to this case. For larger deviations from a Maxwellian distribution the

adiabatic condition appears to become considerably more complicated.

In the equivalent-potential model, the unperturbed kinetic

potential appears to be infinite, according to Eq. 34, when a is not03

zero in the reference frame where a is zero. This is physically01

unreasonable and it suggests very strongly that the general representa-

tion of the electro-kinetic power flow as the product of an equivalent

potential and the convection-current density breaks down under these

,4

i
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circumstances. However, the entropy relations just presented seem to

indicate that the adiabatic solution can be found by disregarding the

third velocity moment, since it neither contributes to nor obstructs the

medium-like behavior of the gas. In other words, the unperturbed poten-

tial V may be taken from Eq. 35 even when the unperturbed distribution0

differs somewhat from a Maxwellian distribution. Also the perturbation

potential V. is then obtained as before from the condition a = 0, in

full agreement with the constant-entropy approach.

The criteria of finite V and small V thus appears to offer an0

equivalent alternative to the adiabatic condition for finding medium-like

solutions in an electron gas. The next section of this report will dis-

cuss a case of a nonuniform electron gas in which it can be established

that the constant-entropy approach and the equivalent-potential approach

lead to exactly the same set of differential equations.

IV. ELECTRON GAS IN EQUILIBRIUM WITH ONE OR TWO PLANE EMITTERS

4.1 The Unperturbed State

The heavy positive fluid postulated in the previous case is

eliminated in the present problem; conditions of statistical equilibrium

are still assumed. There is a net negative space charge and a d-c elec-

tric field, both varying in one dimension only, i.e., the z-dimension.

The average net current density is zero everywhere, and the electron

velocity distribution is Maxwellian with a temperature equal to the

temperature T of the plane electron emitters at z1 and z (Fig. 1). The2

unperturbed state of the gas is determined from the time-invariant

components of the variables in Boltzmann's transport equation (1) and

Poisson's Eq. 17
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P(z,'u) du = a00 (z)cpo(u/.) du/a , (51)

0 E (z) = eoo(z) (52)

0e

giving the two equations

6a
00+o 0 a 0 (53 )
00 0 0

6e00 0 a (54)
dz 00

where the only remaining parameter is

q e TI2 
(55)

000
Elimination of a 00leads to the equation

2eeoo e b2e 2z6 00 + 2@eoo--00 = +2e 00) = 0 (56)

After one integration and separation of the variables, the

results are, respectively,

0e
0oo (e2o +C 2 ) 0 (57a)

and

deoo 0 d(eoo/C31)

e2 .C2( C / c ICdz 2(5+)00" 00
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Depending on the value of the integration constant C2, three

different types of solutions may be obtained. The simplest form results

if

C2  = 0 (58a)

Then

e ( (58b)oo Oz

00 (58c)

The second integration constant determines the origin on the

z-axis. This constant is zero, if the origin is chosen at the plane where

an emitter of infinite electron density would be located.

Both e and a are in this case monotone decreasing functions

of z. The intermediate curve in Fig. 1 indicates qualitatively the varia-

tion of the electron density.

In the case

C2 > 0 (59a)

the corresponding integrals are

tan-1 e( )= -Oz +C L -( gz , (59b)C 1 2 C1

= C cot gz , (59c)

C 1g
a 2 .2 (59d)

00 sin gz
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where

g = C 2 - (59e)

where the second integration constant has been chosen so that the origin

of z may be located as in the first solution. In this case the electron

density has a minimum, as indicated by the top curve in Fig. 1. The

location of this minimum is

S(59f)Zmin - 2g

A second singularity occurs at

z - , (599)

which is the location of the right-hand emitter, if its electron density

is infinite.

If, finally,

C2  = -C 2 < 0 , ( 6 0a)
1 3

the results are

e = C coth gz , (60b)00 3

C 3g

a - 2~ (6oc)
00 sinh2 gz

where now

g = eC - (60d)
3 2e 0 a 2 (6d

The electron density is a monotone decreasing function, indicated

by the bottom curve in Fig. 1.

Which one of these three different charge distributions is appli-

cable in a particular situation may be determined from appropriate boundary
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conditions at the emitters. At a given emitter temperature and given

emitter density aoo(Z ) on the left there are three parameters, only

two of which may be chosen independently, if equilibrium is to be main-

tained. These parameters are: (1) the distance between emitters

z - z1 , (2) the ratio of the electron densities at the emitters

aoo(z2)/ao0 (z 1), and (3) the potential difference between the emitters.

For a given interemitter distance there is only one value of a0 0 (z 2 )

that will result in the first case described by the Eq. 58. A better

right-hand emitter gives conditions described by Eq. 59, and a poorer

right-hand emitter leads to the state in Eq. 60.

The first state may be generated by removing the right-hand

emitter to infinity letting the left-hand emitter reach an equilibrium

condition in relation to its own emission into semi-infinite space.

Insertion of a second emitter which increases the electron density gives

the "supersaturated" state of Eq. 59, while a second emitter which

decreases the density gives the "unsaturated" state of Eq. 60. In each

case the emitters are insulated, so that they assume the potential

difference required to make the average current zero. It may be noted

that the distinction between the supersaturated and unsaturated states is

not in general the same as the distinction between space-charge-limited

and temperature-limited operation of the right-hand emitter (the lower-

potential or lower-emission electrode). These criteria coincide only in

the limit as the position of the right-hand emitter approaches infinity,

-z c . For the case C2 > 0 the right-hand emitter will operateZ2 "1

temperature-limited, if it is placed between the density minimum and the

left-hand emitter.
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S4.2 Propagation of Perturbations

The first-order perturbation equations derived from Eqs. 1 and

17 differ from the system of Eq. 24 in two respects. Since the d-c

electric field is not zero, another term will appear in the second equa-

tion. Furthermore, the system of equations now has variable coefficients,

since both e and 6eoo/6z are functions of z.

The first-order system of equations is

6e10 6a 1

3ti +a- - 0 , (61a)

•2e 6a / e )
1 10 + 2 12 - 1ee 0 + eo (6)

7F 62 z-0 z oa

6a 6a 6a

12 + l 1 a = 0 (61c)

The first equation is the same as Eq. 24a and can be integrated

directly. Like the system Eqs. 24, Eq. 61 has too many dependent var-

iables to be determinate. The velocity distribution is still Maxwellian

everywhere. The distribution of electrons with z is not invariant with

z; however, at any fixed z the random distribution of the interelectron

distance may still be assumed to have the form of Eq. 29, so that the

entropy component S from Eq. 30a applies also in the present case.r

However, the mean distance L and the electron density are functions of z;

consequently the adiabatic condition must be derived from Eq. 13. The
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mean unperturbed velocity u is still zero; so is the space variationom

of the velocity entropy S . But the mean velocity perturbation is

uII
cr a

im a (62)
00

and

NSro 1 6L 1 6a 00
-=z a 7z (63)

00

If common factors k, N, i/a are omitted, Eq. 13 gives the

relation

6 6a00 1
o 1 (a0- ) a1 1  z a

6 (a, + -0) + 2eoo0a 1 (64)

This equation can alternatively be obtained from Eq. 61a and 61c

by setting 6a 1 3 /dz = 0, in accord with the equivalent-potential approach.

If e 1 0 is eliminated between Eqs. 61 and 64, the result may be

written as a pair of transmission-line equations:

6 ( all j• T 1 J 6a
T moo a a - - a1 2 12(65a)

j co ~a =0 -j(. al.X(a (65b)
6za-12 - 3 aooaoo 0

Since (BX)1/2 is constant but (X/B)1/2 = a 0 0 (z) varies with z, the

propagation of plane compressional waves in the equilibrium electron gas

is analogous to the transmission of TEM-waves along a coaxial line with
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constant (•G)1/2 but a tapered characteristic impedance. This analogy

suggests that there may be solutions of the form

a12 h(z) exp (-Jyz) , (66)

where h(z) is real and y is a constant.

If a. /ao0 is eliminated between Eqs. 65 and the trial solution

of Eq. 66 is substituted into the resulting second-order differential

equation,

6 2 a 1 2 a 0 0 a 1 2( 7
12al 1 00o 12a ~

z2 a0 Y -00-z + C)az+ = 0 , (67)

the following pair of equations are obtained by omitting common factors

and separating real and imaginary terms

h2h 1 6aoo 1 hh (68a)-6z2 -ao • T z- ý_z - •• (683U2

000

2 ;z a- -- "h = 0 (68b)
00

The second equation is separable and may be integrated directly

h = = C exp (-e 0 e dz> (69)
4 00 4 00o

the last alternative being obtained from Eq. 53. Substitution of this

solution into Eq. 6 8 a yields the remaining unknown parameter y and proves

that Eq. 66 is indeed the solution of Eq. 67.



-33-

00 a) ( 2 .L.
- e °° - - ee o - 32') (y2 e .• 70)- 9 z @o~o COI

After reduction of the first member, the last member follows from Eq. 57a.

The integration constant C2 is the same constant the value of which

differentiates between the three different d-c charge distributions dis-

cussed earlier. Consequently y is a constant given by the equation

) 2 1 /27 = +K-...+ e2 C2

=I Ci1  ) / (71)

where the critical frequency

3= a (- e2C2)1/2

{ý3le 00 20) }1/2

oo 6ao /
2c~~e 21 (a2 } (72)

The perturbation of the convection-current density and of the

electron density, respectively, may be calculated from a1 2 by reference

to the Eqs. 65b, 67 and 6 1a. The results are

a = C 4 exp (-jyz) , (73)12 4 00
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S~~J = -aqeal 1  = qqeJ

= aqe a y e aj-Wo )z o

.3ao 4 - J2 exp (-J1z) , (71)

J ~e W 2 00 2ao 7-(4

(I 0 a 3 02 6a12

aQ

10 TW.jw - W C 2  
6Z2

324o a 2 -a 2 a
J 7_i 0 00 exp(-jyz)

W-
2 

00 2a 0 ) 2aoo -•3a2 J

(75)

In the three different types of equilibrium states derived earlier,

these relations take the specific form given below:

1. c2 0 0
1

a A -exp (-Jyz) , (76)
12 z

A
2 1 2 (1 + jyz) exp (-Jyz) (77)

A
a 3 (1 + jyz - y2Z3 ) exp (-j~z)10o - ~ (-jza (78)

2 =C
2

- (12 (79)

2. C2 > '0

A
a1 2  2 ing exp (-Jyz) , (80)

12 sin g
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A
= Jqe sin2 gz (g cos gz + J7 sin. gz) exp (-j~z) , (81)

A
2 (g 2 + Jyg COS gz sin gz - y2 sin2 gz) exp (-Jyz)

(82)

_ 2 + , (83)
352

g2 e2 C2 > 0 (84)
1

3. C2 < 0
1

A
a 2  3 exp (-Jyz) , (85)1l2 ýinhg---

A
J = jq s 3 (g cosh gz + jy sinh gz) exp (-jyz) , (86)J =Jme sinh2 gz

A3
alo - snh-g (g 2 + jyg cosh gz sinh yz - y2 sinh2 gz) exp (-jyz)

(87)

} 2 W• - . (88)72 = TL 9 3C2('a2)

g2 = 02C2  2C2 > 0)
3 1

The last case, the unsaturated state, has the greatest significance

of the three, since Eq. 88 indicates that the phase velocity becomes

infinite at
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S= wc . Consequently a frequency range exists, where the phase velocity

is much larger than the thermal electron velocities and the Landau damping

is negligible. In other words, the vibrations are adiabatic and the solu-

tions found are in this range consistent with the assumption of constant

entropy. The factor g appearing in the hyperbolic functions is not an

attenuation constant; these functions describe the varying wave impedance

of the electron gas, not an attenuation of the power propagated by the

waves; that this power is conserved, (i.e., invariant with z) can easily

be verified by calculation of the power flow as the real part of the

product of a /a and the complex conjugate of a1 1 multiplied by an
12 00 1

appropriate real constant.

The results in Case 3 above thus show a striking similarity to

those for the uniform neutral plasma in Section III. Equation 88 is

exactly the same as Eq. 43a. Despite the widely varying electron density

a "plasma resonance frequency" or low-frequency cutoff frequency wco

invariant with the space coordinates, exists in the electron gas, related

not to the electron density only, as in Eq. 40, but also to the density

gradient as expressed by Eq. 72.

For the other two cases, the saturated and supersaturated states

of an electron gas in equilibrium, the results of this investigation are

largely of a negative character, but nonetheless of considerable interest.

No plasma resonance or cutoff frequency exists in these cases. The

phase velocity of the postulated adiabatic waves is equal to or smaller

than the mean square electron velocity. Waves of such velocities are

subject to heavy Landau damping; in other words, the solutions have no

other physical significance than the demonstration that no even approx-

imately adiabatic waves exist in an electron gas under these conditions.
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The gas does not show the properties of an elastic medium but rather

those of an extremely viscous liquid. Time and space correlations of

fluctuations in the gas are very short. Any disturbance from an external

source is rapidly attenuated. Noise is absorbed and emitted at equal

rates, so that the noise level is maintained at that of equilibrium

thermal noise at the temperature of the gas.

V. EXTENSION OF THE ADIABATIC-PERTURBATION INVESTIGATION

TO ACCELERATED FLOW

In an electron gun the electron gas is in a state of flow, which

is very different from the equilibrium states analyzed in previous sections

of this report. The intuitive understanding and the mathematical analysis

of noise transport or propagation in an electron gun would be considerably

facilitated if the adiabatic trial-and-error approach that worked so well

in the equilibrium gas could produce analogous closed-form solutions for

accelerated flow, so that the existence of a plasma resonance frequency

and medium-like wave propagation could be proved or disproved under

various operating conditions or in various regions of the electron gun.

A certain amount of progress has been made along this path, but

closed-form expressions for the adiabatic solutions corresponding to

Eqs. 76 to 89 have not yet been found. The increased difficulties are

of course connected with the fact that the mean velocity and acceleration

are no more zero and the velocity variance (or the "temperature") no more

constant throughout the gas. The expansion of the unperturbed flow is

not completely reversible, i.e., adiabatic, everywhere, because of the

sorting of the electrons into one class that passes the potential minimum

and another class that does not. Past the potential minimum the expansion
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becomes reversible, as long as the gas is not compressed beyond the

density at the potential minimum, i.e., again reaches a potential as low

as the potential at the minimum.

The electron distribution in velocity space is now expressed in

Hermite functions of the velocity variable

u - u
mo

where u is the mean unperturbed velocity and a 2 is the variance of the
mo

velocity in the unperturbed state. Both u and a are functions of z.mo

The first-order perturbation equations obtained from Boltzmann's

and Poisson's equations, combined with the condition for adiabatic

perturbations, can be brought to the form of a pair of transmission-line

equations

ýv
= - jX(z)I ,

6 - jB(z)V ,

where V and I are functions of the coefficients alo) a, a and the

parameters of the unperturbed stream; X and B are real functions of the

latter.

No closed-form solution of this system of equations has been found

as yet. Already the unperturbed state is of a rather complicated trans-

cendental nature for space-charge-limited flow in an electron gun.

Without such a solution it is difficult to ascertain whether or not a

cutoff frequency or plasma resonance frequency exists, and if so, how

it varies with the differet parameters of the gun. The final condition

in a beam, drifting at high velocity in an approximately field-free space,
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is well established: here a plasma resonance frequency exists, and the

magnitude of the noise power in the two waves running in opposite direc-

tions in relation to the mean electron velocity is not very different.

But it appears likely that the medium-like solutions for noise propagation

in the preceding accelerated region, if they can be found, would lead to

a better understanding of the factors that determine the noise level in

a beam and the noise factor in klystrons and traveling-wave tubes.

The discussion of the invalidation of some of the adiabatic

solutions by Landau damping is somewhat different in the case of accel-

erated flow in comparison with the equilibrium states. The perturbation

generally produces irreversible changes in the velocity distribution

when a significant number of electrons move with velocities equal to or

nearly equal to the phase velocity of the wave. In the electron gun the

Maxwellian velocity distribution is incomplete, because of the fraction

of electrons incapable of passing the potential minimum; consequently

waves with phase velocities in this missing range can be expected to have

no Landau damping. In this case, therefore, adiabatic solutions may have

physical significance, even if their phase velocity is in the thermal

range relative to the mean velocity of the electrons.

VI. CONCLUSIONS

The postulate of the existence of adiabatic perturbations traveling

as plane compressional waves through an electron gas has produced solutions

of Poisson's equation and Boltzmann's transport equation, from which some

interesting conclusions can be drawn. In an electron gas at equilibrium

between two plane infinite emitters of the same temperature but different

emissivity the result was found consistent with the condition of negligible
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Landau damping, if the gas was unsaturated, i.e., if one of the emitters

was operated strongly temperature-limited. In this case a plasma reso-

nance frequency exists, which is independent of the space coordinates,

despite wide variations of the electron density with distance from the

emitters. Under all other equilibrium conditions no such plasma

resonance frequency exists, and Landau damping will strongly impair all

medium-like behavior of the gas in response to compressional disturbances.

Corresponding analysis of an electron gas under condition of

accelerated flow has made some progress but no final conclusions have yet

been obtained.
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